Skip to main content

This list of references relates to the consultation on importing requirements for hop plants for planting 

Apple fruit crinkle viroid

Biosecurity Australia (2010) Final review of policy: importation of Hop (Humulus species) propagative material into Australia. Biosecurity Australia, Australian Government, Canberra.

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

Bragard, C; Dehnen‐Schmutz, K; Gonthier, P; Jacques, M A; Jaques Miret, J A; Justesen, A F; Macleod, A; Magnusson, C S; Milonas, P; Navas‐Cortes, J A; Parnell, S; Potting, R; Reignault, P L; Thulke, H H; Van Der Werf, W; Vicent Civera, A; Yuen, J; Zappalà, L; Candresse, T; Chatzivassiliou, E; Finelli, F; Winter, S; Chiumenti, M; Di Serio, F; Kaluski, T; Minafra, A; Rubino, L (2019) Pest categorisation of non‐EU viruses and viroids of Cydonia Mill., Malus Mill. and Pyrus L. EFSA Journal 17(9).

Breitwieser, I; Brownsey, P J; Nelson, W A; Wilton, A D (2010) Flora of New Zealand Online. www.nzflora.info Accessed 2022-11

Di Serio, F; Ambrós, S; Sano, T; Flores, R; Navarro, B (2018) Viroid Diseases in Pome and Stone Fruit Trees and Koch’s Postulates: A Critical Assessment. Viruses 10(11): 612.

EPPO (2022) EPPO Datasheet: Apple fruit crinkle viroid. http://gd.eppo.int

Flores, R; Gas, M-E; Molina-Serrano, D; Nohales, M-Á; Carbonell, A; Gago, S; De La Peña, M; Daròs, J-A (2009) Viroid Replication: Rolling-Circles, Enzymes and Ribozymes. Viruses 1(2): 317-334.

Gregory, A; Scott, S W; Brannen, P M; Royal, D C (2018) Graft-transmissible agents in oriental persimmons (Diospyros kaki L) in the southeastern USA. Australasian Plant Disease Notes 13(1).

Guček, T; Jakše, J; Matoušek, J; Radišek, S (2019) One-step multiplex RT-PCR for simultaneous detection of four viroids from hop (Humulus lupulus L.). European Journal of Plant Pathology 154(2): 273-286.

ICTV (2022) International Committee on Taxonomy of Viruses. https://ictv.global/taxonomy/ Accessed 2022

Ito, T; Kanematsu, S; Koganezawa, H; Tsuchizaki, T; Yoshida, K (1993) Detection of a Viroid Associated with Apple Fruit Crinkle Disease. Japanese Journal of Phytopathology 59(5): 520-527.

Mahaffee, W; Pethybridge, S; Gent, D (2007) The compendium of hop diseases, arthropod pests and other disorders. The American Phytopathological Society; St. Paul, Minnesota.

Nakaune, R; Nakano, M (2008) Identification of a new Apscaviroid from Japanese persimmon. Archives of Virology 153(5): 969-972.

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

NZPCN (2022) New Zealand Plant Conservation Network. https://www.nzpcn.org.nz/ Accessed June 2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Pethybridge, S J; Hay, F S; Barbara, D J; Eastwell, K C; Wilson, C R (2008) Viruses and viroids infecting hop: Significance, epidemiology, and management. Plant Disease 92(3): 324-338.

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Sano, T; Isono, S; Matsuki, K; Kawaguchi-Ito, Y; Tanaka, K; Kondo, K-I; Iijima, A; Bar-Joseph, M (2008) Vegetative propagation and its possible role as a genetic bottleneck in the shaping of the apple fruit crinkle viroid populations in apple and hop plants. Virus Genes 37(3): 298-303.

Sano, T; Yoshida, H; Goshono, M; Monma, T; Kawasaki, H; Ishizaki, K (2004) Characterization of a new viroid strain from hops: evidence for viroid speciation by isolation in different host species. Journal of General Plant Pathology 70(3): 181-187.

Sastry, K S; Mandal, B; Hammond, J; Scott, S W; Briddon, R W (2019) Humulus lupulus (Hop). Encyclopedia of Plant Viruses and Viroids. Springer India: New Delhi.

Veerakone, S; Tang, J; Ward, L; Liefting, L; Perez-Egusquiza, Z; Lebas, B; Delmiglio, C; Fletcher, J; Guy, P (2015) A review of the plant virus, viroid, liberibacter and phytoplasma records for New Zealand. Australasian Plant Pathology 44: 463-514.

Arabis mosaic virus small satellite RNA

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

Coley-Smith, J R (1961) Hop diseases and the brewer. Journal of the Institute of Brewing 67(3): 231-235.

Davies, D; Clark, M (1983) A satellite‐like nucleic acid of arabis mosaic virus associated with hop nettlehead disease. J Annals of applied biology 103(3): 439-448.

EPPO (2022) EPPO global database. https://gd.eppo.int Accessed 2022

Etscheid, M; Tousignant, M E; Kaper, J M (1995) Small satellite of arabis mosaic virus: autolytic processing of in vitro transcripts of (+) and (-) polarity and infectivity of (+) strand transcripts. Journal of General Virology 76(2): 271-282.

Hay, F; Close, R (1992) Distribution of Xiphinema diversicaudatum (Micoletzky, 1927) Thome, 1939 in commercial hop (Humulus lupulus L.) gardens in New Zealand and implications for the spread of Arabis mosaic virus. J New Zealand journal of crop horticultural science 20(3): 367-370.

Hu, C-C; Hsu, Y-H; Lin, N-S (2009) Satellite RNAs and satellite viruses of plants. J Viruses 1(3): 1325-1350.

ICTV (2022) International Committee on Taxonomy of Viruses. https://ictv.global/taxonomy/ Accessed 2022

Liu, Y Y; Hellen, C U T; Cooper, J I; Bertioli, D J; Coates, D; Bauer, G (1990) The nucleotide sequence of a satellite RNA associated with Arabis mosaic nepovirus. Journal of General Virology 71(6): 1259-1263.

Mahaffee, W; Pethybridge, S; Gent, D (2007) The compendium of hop diseases, arthropod pests and other disorders. The American Phytopathological Society; St. Paul, Minnesota.

MPI (2021) Facility Standard: Post Entry Quarantine for Plants. Ministry for Primary Industries, https://www.mpi.govt.nz/dmsdocument/11368-Post-Entry-Quarantine-forPlants-Facilities-Standard

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Veerakone, S; Tang, J; Ward, L; Liefting, L; Perez-Egusquiza, Z; Lebas, B; Delmiglio, C; Fletcher, J; Guy, P (2015) A review of the plant virus, viroid, liberibacter and phytoplasma records for New Zealand. Australasian Plant Pathology 44: 463-514.

Ascochyta humuliphila

Bedlan, G (2015) First report of Ascochyta humuliphila on Humulus lupulus in Austria. Journal Für Kulturpflanzen 67(3): 105-108.

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

Bretag, T W; Keane, P J; Price, T V (2006) The epidemiology and control of ascochyta blight in field peas: a review. Australian Journal of Agricultural Research 57(8): 883-902.

Buchanan, P K (1984) Systemic growth of Ascochyta paspali in paspalum. New Zealand Journal of Agricultural Research 27(3): 451-457.

Korpelainen, H; Pietiläinen, M (2021) Hop (Humulus lupulus L.): Traditional and Present Use, and Future Potential. Economic Botany 75(3-4): 302-322.

Melʹnik, V A (2000) A key to the fungi of the genus Ascochyta Lib.

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Pande, S; Siddique, K H M; Kishore, G K; Bayaa, B; Gaur, P M; Gowda, C L L; Bretag, T W; Crouch, J H (2005) Ascochyta blight of chickpea (Cicer arietinum L.): a review of biology, pathogenicity, and disease management. Australian Journal of Agricultural Research 56(4): 317.

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Skoglund, L G; Harveson, R M; Chen, W; Dugan, F; Schwartz, H F; Markell, S G; Porter, L; Burrows, M L; Goswami, R (2011) Ascochyta Blight of Peas. Plant Health Progress 12(1): 29.

Suryanarayanan, T S; Wittlinger, S K; Faeth, S H (2005) Endophytic fungi associated with cacti in Arizona1 1Dedicated to John Webster on the occasion of his 80th birthday. Mycological Research 109(5): 635-639.

Tateno, O; Hirose, D; Osono, T; Takeda, H (2015) Beech cupules share endophytic fungi with leaves and twigs. Mycoscience 56(3): 252-256.

Tivoli, B; Banniza, S (2007) Comparison of the epidemiology of ascochyta blights on grain legumes. Springer Netherlands.

'Candidatus Phytoplasma asteris'

Bertaccini, A; Duduk, B; Paltrinieri, S; Contaldo, N (2014) Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences 5: 1763-1788.

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

CABI (2022) Datasheet: Candidatus Phytoplasma asteris (yellow disease phytoplasmas). https://www.cabi.org/cpc/datasheet/7642 Accessed October 2022

Chen, J; Pu, X; Deng, X; Liu, S; Li, H; Civerolo, E (2009) A phytoplasma related to ‘Candidatus Phytoplasma asteris’ detected in citrus showing huanglongbing (yellow shoot disease) symptoms in Guangdong, PR China. Phytopathology 99(3): 236-242.

Davis, R E; Dally, E L; Zhao, Y; Wolf, T K (2018) Genotyping points to divergent evolution of ‘Candidatus Phytoplasma asteris’ strains causing North American grapevine yellows and strains causing aster yellows. Plant Disease 102(9): 1696-1702.

EPPO (2021) 'Candidatus Phytoplasma asteris'(PHYPAS). https://gd.eppo.int/taxon/PHYPAS/distribution Accessed 8/12/2022

Ivanauskas, A; Valiunas, D; Jomantiene, R; Picciau, L; Davis, R E (2014) Possible insect vectors of 'Candidatus Phytoplasma asteris' and 'Ca. Phytoplasma pruni'-related strains in Lithuania. Zemdirbyste-Agriculture 101(3).

Jakovljević, M; Jović, J; Krstić, O; Mitrović, M; Marinković, S; Toševski, I; Cvrković, T (2020) Diversity of phytoplasmas identified in the polyphagous leafhopper Euscelis incisus (Cicadellidae, Deltocephalinae) in Serbia: pathogen inventory, epidemiological significance and vectoring potential. European Journal of Plant Pathology 156(1): 201-221.

Jomantiene, R; Davis, R (2005) Apple sessile leaf: a new disease associated with a 'Candidatus Phytoplasma asteris' subgroup 16SrI-B phytoplasma in Lithuania. Plant Pathology 54(2): 237-237.

Kamińska, M; Śliwa, H (2006) First report of a decline of ashleaf maple (Acer negundo) in Poland, associated with 'Candidatus Phytoplasma asteris'. Plant Pathology 55(2): 293.

Kumari, S; Nagendran, K; Rai, A B; Singh, B; Rao, G P; Bertaccini, A (2019) Global status of phytoplasma diseases in vegetable crops. Frontiers in Microbiology 10: 1349.

Lee, I M; Gundersen-Rindal, D E; Davis, R E; Bottner, K D; Marcone, C; Seemüller, E (2004) ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. International Journal of Systematic and Evolutionary Microbiology 54(4): 1037-1048.

Mahaffee, W; Pethybridge, S; Gent, D (2007) The compendium of hop diseases, arthropod pests and other disorders. The American Phytopathological Society; St. Paul, Minnesota.

Marcone, C; Bellardi, M; Bertaccini, A (2016) Phytoplasma diseases of medicinal and aromatic plants. Journal of Plant Pathology: 379-404.

Mitra, S; Debnath, P; Bahadur, A; Chandra Das, S; Yadav, A; Rao, G (2019) First report on ‘Candidatus Phytoplasma asteris’(16SrI-B subgroup) strain associated with pineapple shoot proliferation and witches’ broom symptoms in Tripura, India. Plant Disease 103(11): 2941-2941.

MPI (2021) Facility Standard: Post Entry Quarantine for Plants. Ministry for Primary Industries, https://www.mpi.govt.nz/dmsdocument/11368-Post-Entry-Quarantine-forPlants-Facilities-Standard

Novotný, V (1994) Association of Polyphagy in Leafhoppers (Auchenorrhyncha, Hemiptera) with Unpredictable Environments. Oikos 70(2): 223-232.

NZIER (2016) How valuable is that plant species? Application of a method for enumerating the contribution of selected plant species to New Zealand’s GDP. Ministry for Primary Industries, Wellington.

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

NZPCN (2022) New Zealand Plant Conservation Network. https://www.nzpcn.org.nz/ Accessed June 2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Solarska, E; Kamińska, M; Śliwa, H (2004) First Report of Phytoplasma Infection in Hop Plants. Plant Disease 88(8): 908-908.

Trivellone, V (2019) An online global database of Hemiptera-Phytoplasma-Plant biological interactions. Biodiversity Data Journal (7).

Veerakone, S; Tang, J; Ward, L; Liefting, L; Perez-Egusquiza, Z; Lebas, B; Delmiglio, C; Fletcher, J; Guy, P (2015) A review of the plant virus, viroid, liberibacter and phytoplasma records for New Zealand. Australasian Plant Pathology 44: 463-514.

Villa, M; Reis, C; Rodrigues, I; Baptista, P; Pereira, J A (2018) Aphrophoridae dynamic and feeding preference for plants in natural ground cover in olive groves from Trás-os-Montes.  In 2nd Joint Annual Meeting European Research on Emerging Plant Diseases. Valencia.

Weintraub, P G; Jones, P (2009) Phytoplasmas: Genomes, Plant Hosts And. Cabi.

Zwolińska, A; Borodynko-Filas, N (2021) Intra and extragenomic variation between 16S rRNA genes found in 16SrI‐B‐related phytopathogenic phytoplasma strains. Annals of Applied Biology 179(3): 368-381.

Zwolińska, A; Krawczyk, K; Borodynko-Filas, N; Pospieszny, H (2019) Non-crop sources of Rapeseed Phyllody phytoplasma (‘Candidatus Phytoplasma asteris’: 16SrI-B and 16SrI-(B/L) L), and closely related strains. Crop Protection 119: 59-68.

Cercospora 'sp. Q'

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

CD (2022) Viçosa Climate. https://en.climate-data.org/south-america/brazil/minas-gerais/vicosa-25021/

Degu, T; Yaregal, W; Gudisa, T (2020) Status of common bean (Phaseolus vulgaris L.) diseases in metekel zone, north west Ethiopia. Journal Plant Pathology Microbiology 11: 494.

Duthie, J A; Campbell, C L (1991) Effects of plant debris on intensity of leaf spot diseases, incidence of pathogens, and growth of alfalfa. Phytopathology 81(5): 511-517.

Groenewald, J; Nakashima, C; Nishikawa, J; Shin, H-D; Park, J-H; Jama, A; Groenewald, M; Braun, U; Crous, P (2013) Species concepts in Cercospora: spotting the weeds among the roses. Studies in Mycology 75(1): 115-170.

Groenewald, M; Groenewald, J Z; Braun, U; Crous, P W (2006) Host range of Cercospora apii and C. beticola and description of C. apiicola, a novel species from celery. Mycologia 98(2): 275-285.

Imbusch, F; Liebe, S; Erven, T; Varrelmann, M (2021) Dynamics of cercospora leaf spot disease determined by aerial spore dispersal in artificially inoculated sugar beet fields. Plant Pathology 70(4): 853-861.

Khan, A; Ijaz, M; Haq, I; Farzand, A; Tariqjaved, M (2014) Management of Cercospora leaf spot of groundnut (Cercospora arachidicola & Cercosporidium personatum) through the use of systemic fungicides. Cercetari Agronomice in Moldova 47(2): 97-102.

Lewis, R (1940) A method of inducing spore production by Cercospora apii Fries in pure culture. Phytopathology 30(7).

MPI (2021) Facility Standard: Post Entry Quarantine for Plants. Ministry for Primary Industries, https://www.mpi.govt.nz/dmsdocument/11368-Post-Entry-Quarantine-forPlants-Facilities-Standard

Murthy, N; Lokesh, S (2013) Impact of Cercospora apii on teak nursery and its management in vivo. International Journal of Agricultural Science and Research, Chennai 3(3): 47-53.

NZIER (2016) How valuable is that plant species? Application of a method for enumerating the contribution of selected plant species to New Zealand’s GDP. Ministry for Primary Industries, Wellington.

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Pereira, C M; Ferreira, B W; Barreto, R (2022) First Report of Cercospora apii sensu lato ‘sp. Q’ Leaf Spot on Hop in Brazil. Plant Disease.

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

Plant & Food Research (2021) Fresh Facts: New Zealand Horticulture. Auckland, New Zealand. https://unitedfresh.co.nz/technical-advisory-group/fresh-facts

Raid, R (1989) Evaluation of fungicides for control of early blight in Florida cerely production. In Proc. Fla. State Hort. Soc (Vol. 102, pp. 360-362).

Skaracis, G N; Pavli, O I; Biancardi, E (2010) Cercospora Leaf Spot Disease of Sugar Beet. Sugar Tech 12(3-4): 220-228.

Torres, A; Lisboa, W; Colmán, A; Barreto, R (2016) First Record of Cercospora apii sensu lato Causing Leaf Spots on Yellow Guinea Yam in Brazil. Plant Disease 100(9): 1953.

Vereijssen, J; Schneider, J H; Termorshuizen, A J (2005) Root infection of sugar beet by Cercospora beticola in a climate chamber and in the field. European Journal of Plant Pathology 112(3): 201-210.

Citrus bark cracking viroid

Bernad, L; Duran-Vila, N (2006) A novel RT-PCR approach for detection and characterization of citrus viroids. Mol Cell Probes 20(2): 105-113.

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

Duran-Vila, N; Roistacher, C N; Rivera-Bustamante, R; Semancik, J S (1988) A Definition of Citrus Viroid Groups and Their Relationship to the Exocortis Disease. Journal of General Virology 69(12): 3069-3080.

EPPO (2015) Citrus bark cracking viroid is causing ‘severe hop stunt disease’ in Slovenia: addition to the EPPO Alert List. https://gd.eppo.int/reporting/article-4777

Flores, R; Gas, M-E; Molina-Serrano, D; Nohales, M-Á; Carbonell, A; Gago, S; De La Peña, M; Daròs, J-A (2009) Viroid Replication: Rolling-Circles, Enzymes and Ribozymes. Viruses 1(2): 317-334.

Incorporated, H a N Z C G (2001) Growing Citrus in New Zealand: A practical guide. New Zealand Citrus Growers Incorporated; New Zealand.

Jakse, J; Radisek, S; Pokorn, T; Matousek, J; Javornik, B (2015) Deep-sequencing revealedCitrus bark cracking viroid(CBCVd) as a highly aggressive pathogen on hop. Plant Pathology 64(4): 831-842.

MPI (2021a) Facility Standard: Post Entry Quarantine for Plants. Ministry for Primary Industries, https://www.mpi.govt.nz/dmsdocument/11368-Post-Entry-Quarantine-forPlants-Facilities-Standard

MPI (2021b) Import Health Standard; Citrus Plants for Planting. In B N Zealand (Ed.), (pp. 17). Wellington, New Zealand: Ministry for Primary Industries.

Murcia, N; Bani Hashemian, S M; Serra, P; Pina, J A; Duran-Vila, N (2015) Citrus viroids: Symptom expression and performance of Washington navel sweet orange trees grafted on Carrizo citrange. Plant Disease 99: 125-136.

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

Plant & Food Research (2021) Fresh Facts: New Zealand Horticulture. Auckland, New Zealand. https://unitedfresh.co.nz/technical-advisory-group/fresh-facts      

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Radišek, S (2015) PEST RISK ANALYSIS REPORT for Citrus bark cracking viroid (CBCVd) on hop (Humulus lupulus). Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia. https://www.gov.si/assets/organi-v-sestavi/UVHVVR/Zdravje-rastlin/Organiziranost-zdravstvenega-varstva-rastlin/Ocena-tveganja/Sprejete-ocene-tveganja/Ocena_tveganja_CBCVd.pdf

Radisek, S; Majer, A; Jakse, J; Javornik, B; Matoušek, J (2012) First report of Hop stunt viroid infecting hop in Slovenia. Plant Disease 96(4): 592-592.

Seigner, L; Liebrecht, M; Keckel, L; Einberger, K; Absmeier, C (2020) Real-time RT-PCR detection of Citrus bark cracking viroid (CBCVd) in hops including an mRNA-based internal positive control. Journal of Plant Diseases and Protection 127(6): 763-767.

Štajner, N; Radišek, S; Mishra, A K; Nath, V S; Matoušek, J; Jakše, J (2019) Evaluation of Disease Severity and Global Transcriptome Response Induced by Citrus bark cracking viroid, Hop latent viroid, and Their Co-Infection in Hop (Humulus lupulus L.). International Journal of Molecular Sciences 20(13): 3154.

The University of  Auckland (2022) NZ Plants, Rutaceae. https://www.nzplants.auckland.ac.nz/en/about/seed-plants-flowering/rutaceae.html Accessed 7/06/2022

Treiber, C; Majer, A; Born, U; Kamp, J; Schrader, G; Stampfl, J; Hagemann, M (2022) Possible import routes and sequence variations of the citrus bark cracking viroid in German hops.

Veerakone, S; Tang, J; Ward, L; Liefting, L; Perez-Egusquiza, Z; Lebas, B; Delmiglio, C; Fletcher, J; Guy, P (2015) A review of the plant virus, viroid, liberibacter and phytoplasma records for New Zealand. Australasian Plant Pathology 44: 463-514.

Wang, Y; Atta, S; Wang, X; Yang, F; Zhou, C; Cao, M (2018) Transcriptome sequencing reveals novel Citrus bark cracking viroid (CBCVd) variants from citrus and their molecular characterization. PLOS ONE 13(6): e0198022.

Diaporthe humulicola

Allan-Perkins, E; Li, D-W; Schultes, N; Yavuz, S; LaMondia, J (2020) The Identification of a New Species, Diaporthe humulicola, a Pathogen Causing Diaporthe Leaf Spot on Common Hop. Plant Disease 104(9): 2377-2390.

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

EPA (2022) Environmental Protection Authority Te Mana Rauhī Taiao. https://www.epa.govt.nz/database-search/approved-hazardous-substances-with-controls Accessed 2022

Gomes, R R; Glienke, C; Videira, S I; Lombard, L; Groenewald, J Z; Crous, P W (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31: 1-41.

Hatlen, R J; Higgins, D S; Venne, J; Rojas, J A; Hausbeck, M K; Miles, T D (2022) First Report of Halo Blight of Hop (Humulus lupulus) Caused by Diaporthe humulicola in Quebec, Canada. Plant Disease 106(6): 1750.

Higgins, D S; Hatlen, R J; Byrne, J M; Sakalidis, M L; Miles, T D; Hausbeck, M K (2021) Etiology of halo blight in Michigan hopyards. Plant Disease 105(4): 859-872.

Mondal, S N; Vicent, A; Reis, R F; Timmer, L W (2007) Saprophytic Colonization of Citrus Twigs by Diaporthe citriand Factors Affecting Pycnidial Production and Conidial Survival. Plant Disease 91(4): 387-392.

MPI (2021) Facility Standard: Post Entry Quarantine for Plants. Ministry for Primary Industries, https://www.mpi.govt.nz/dmsdocument/11368-Post-Entry-Quarantine-forPlants-Facilities-Standard

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

NZPCN (2022) New Zealand Plant Conservation Network. https://www.nzpcn.org.nz/ Accessed June 2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Fusarium spp.

Bacon, C W; Yates, I E (2006) Endophytic Root Colonization by Fusarium Species: Histology, Plant Interactions, and Toxicity. In B J E Schulz; C J C Boyle; T N Sieber (eds) Microbial Root Endophytes. Springer Berlin Heidelberg: Berlin, Heidelberg.

Barros, G G; Zanon, M S A; Chiotta, M L; Reynoso, M M; Scandiani, M M; Chulze, S N (2014) Pathogenicity of phylogenetic species in the Fusarium graminearum complex on soybean seedlings in Argentina. European Journal of Plant Pathology 138(2): 215-222.

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

Boutigny, A-L; Ward, T J; Van Coller, G J; Flett, B; Lamprecht, S C; O’Donnell, K; Viljoen, A (2011) Analysis of the Fusarium graminearum species complex from wheat, barley and maize in South Africa provides evidence of species-specific differences in host preference. Fungal Genetics and Biology 48(9): 914-920.

Breitwieser, I; Brownsey, P J; Nelson, W A; Wilton, A D (2010) Flora of New Zealand Online. www.nzflora.info Accessed 2022-11

Castañares, E; Dinolfo, M I; Del Ponte, E M; Pan, D; Stenglein, S A (2016) Species composition and genetic structure of Fusarium graminearum species complex populations affecting the main barley growing regions of South America. Plant Pathology 65(6): 930-939.

Ceron-Bustamante, M; Ayala-Escobar, V; Nava-Diaz, C; Ward, T J; Leyva-Mir, G; Villasenor-Mir, H E (2016) First Report of Fusarium meridionale Causing Fusarium Head Blight of Wheat in Mexico. Plant Disease 100(8): 1790.

Chiotta, M L; Alaniz Zanon, M S; Palazzini, J M; Scandiani, M M; Formento, A N; Barros, G G; Chulze, S N (2016) Pathogenicity of Fusarium graminearum and F. meridionale on soybean pod blight and trichothecene accumulation. Plant Pathology 65(9): 1492-1497.

Darvas, B; Bánáti, H; Takács, E; Lauber, É; Szécsi, Á; Székács, A (2011) Relationships of Helicoverpa armigera, Ostrinia nubilalis and Fusarium verticillioides on MON 810 Maize. Insects 2(1): 1-11.

de Arruda, M H M; Zchosnki, F L; Silva, Y K; De Lima, D L; Tessmann, D J; Da-Silva, P R (2021) Genetic diversity of Fusarium meridionale, F. austroamericanum, and F. graminearum isolates associated with Fusarium head blight of wheat in Brazil. Tropical Plant Pathology 46(1): 98-108.

Desjardins, A E; Proctor, R H (2011) Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Fungal Biology 115(1): 38-48.

Ding, Z L; Wu, J P; Yang, C Z; Zhou, J; Jiao, Z B; Guo, F L (2018) First Report of Fusarium meridionale and Fusarium incarnatum Causing Dry Rot of Konjac in China. Plant Disease 102(1): 247.

Dong, F; Xu, J H; Shi, J R; Mokoena, M P; Olaniran, A O; Chen, X Y; Lee, Y-W (2020) First Report of Fusarium Head Blight Caused by Fusarium meridionale in Rice in China. Plant Disease 104(10): 2726.

Drakulic, J; Bruce, T J A; Ray, R V (2017) Direct and host-mediated interactions between Fusarium pathogens and herbivorous arthropods in cereals. Plant Pathology 66(1): 3-13.

Gillespie, D R; Menzies, J G (1993) Fungus gnats vector Fusarium oxysporum f.sp. radicis-lycopersici. Annals of Applied Biology 123(3): 539-544.

Gomes, L B; Ward, T J; Badiale-Furlong, E; Del Ponte, E M (2015) Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from southern Brazilian rice. Plant Pathology 64(4): 980-987.

Gomes, R R; Glienke, C; Videira, S I; Lombard, L; Groenewald, J Z; Crous, P W (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31: 1-41.

Imazaki, I; Kadota, I (2015) Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS Microbiology Ecology 91(9).

Khaledi, N; Taheri, P; Falahati Rastegar, M (2017) Identification, virulence factors characterization, pathogenicity and aggressiveness analysis of Fusarium spp., causing wheat head blight in Iran. European Journal of Plant Pathology 147(4): 897-918.

Kuhnem, P R; Ward, T J; Silva, C N; Spolti, P; Ciliato, M L; Tessmann, D J; Del Ponte, E M (2016) Composition and toxigenic potential of the Fusarium graminearum species complex from maize ears, stalks and stubble in Brazil. Plant Pathology 65(7): 1185-1191.

Kumar, P; Mahato, D K; Gupta, A; Pandey, S; Paul, V; Saurabh, V; Pandey, A K; Selvakumar, R; Barua, S; Kapri, M; Kumar, M; Kaur, C; Tripathi, A D; Gamlath, S; Kamle, M; Varzakas, T; Agriopoulou, S (2022) Nivalenol Mycotoxin Concerns in Foods: An Overview on Occurrence, Impact on Human and Animal Health and Its Detection and Management Strategies. Toxins 14(8): 527.

Machado, F J; De Barros, A V; McMaster, N; Schmale, D G; Vaillancourt, L J; Del Ponte, E M (2022) Aggressiveness and Mycotoxin Production by Fusarium meridionale Compared with F. graminearum on Maize Ears and Stalks in the Field. Phytopathology® 112(2): 271-277.

Moretti Ferreira Pinto, A; Araujo, F; De Andrade, L; Lage Mendes Fagherazzi, C C; Fontanella Brighenti, M; Schlichting De Martin, A; Gomes, M; Bitencourt Fernandes, L; Duarte, J; João Arioli, V; Sommer, C; Bizolo, V (2022) First report of Fusarium meridionale causing canker in hop plants. Australasian Plant Disease Notes 17(1).

Munkvold, G P (2003) Epidemiology of Fusarium Diseases and their Mycotoxins in Maize Ears. European Journal of Plant Pathology 109(7): 705-713.

NZIER (2016) How valuable is that plant species? Application of a method for enumerating the contribution of selected plant species to New Zealand’s GDP. Ministry for Primary Industries, Wellington.

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

O'Donnell, K; Kistler, H C; Tacke, B K; Casper, H H (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proceedings of the National Academy of Sciences 97(14): 7905-7910.

O'Donnell, K; Sutton, D A; Rinaldi, M G; Gueidan, C C; Crous, P W; Geiser, D M (2009) Novel Multilocus Sequence Typing Scheme Reveals High Genetic Diversity of Human Pathogenic Members of the Fusarium incarnatum - F. equiseti and F. chlamydosporum species complexes within the United States. Journal of clinical microbiology 47(12): 3851-3861.

O’Donnell, K; Ward, T J; Geiser, D M; Corby Kistler, H; Aoki, T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genetics and Biology 41(6): 600-623.

O’Neal, S D; Walsh, D; Gent, D; Barbour, J; Boydston, R; George, A; James, D; Sirrine, J (2015) Field guide for integrated pest management in hops. US Hop Industry Plant Protection Committee, Pullman, WA.

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Parime, B C; Penumatsa, K V; Injeti, S K; Hooda, K S (2022) First report of pokkah boeng of maize [Zea mays L.] caused by Fusarium luffae in India. Indian Phytopathology 75(1): 293-295.

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

Plant & Food Research (2021) Fresh Facts: New Zealand Horticulture. Auckland, New Zealand. https://unitedfresh.co.nz/technical-advisory-group/fresh-facts

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Rybecky, A I; Chulze, S N; Chiotta, M L (2018) Effect of water activity and temperature on growth and trichothecene production by Fusarium meridionale. International Journal of Food Microbiology 285: 69-73.

Sampietro, D A; Díaz, C G; Gonzalez, V; Vattuone, M A; Ploper, L D; Catalan, C A; Ward, T J (2011) Species diversity and toxigenic potential of Fusarium graminearum complex isolates from maize fields in northwest Argentina. Int J Food Microbiol 145(1): 359-364.

Summerell, B A; Leslie, J F; Liew, E C Y; Laurence, M H; Bullock, S; Petrovic, T; Bentley, A R; Howard, C G; Peterson, S A; Walsh, J L; Burgess, L W (2011) Fusarium species associated with plants in Australia. Fungal Diversity 46(1): 1-27.

Szilagyi-Zecchin, V J; Adamoski, D; Gomes, R R; Hungria, M; Ikeda, A C; Kava-Cordeiro, V; Glienke, C; Galli-Terasawa, L V (2016) Composition of endophytic fungal community associated with leaves of maize cultivated in south Brazilian field. Acta Microbiologica et Immunologica Hungarica 63(4): 449-466.

Toghueo, R M K (2020) Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology 11(1): 1-21.

Wang, H; Feng, D; Chen, L; Yang, J; Wang, X; Wang, J (2022) First Report of Fusarium meridionale Causing Stalk Rot of Ryegrass in China. Plant Disease 106(5): 1533.

Wang, M M; Chen, Q; Diao, Y Z; Duan, W J; Cai, L (2019) Fusarium incarnatum-equiseti complex from China. Persoonia 43: 70-89.

Yu, J; Zhao, Z; Sheng, J; Song, W; Huang, L; Liu, Q; Liu, Y; Tang, W (2022) First Report of Flower Rot Caused by Fusarium luffae and F. asiaticum on White Kiwifruit in China. Plant Disease 106(9): 2528.

Zhang, H; Brankovics, B; Luo, W; Xu, J; Xu, J S; Guo, C; Guo, J G; Jin, S L; Chen, W Q; Feng, J; Van Diepeningen, A D; Van der Lee, T A J; Waalwijk, C (2016) Crops are a main driver for species diversity and the toxigenic potential of Fusarium isolates in maize ears in China. World Mycotoxin Journal 9(5): 701-715.

Zhang, X P; Cao, X D; Dang, Q Q; Liu, Y G; Zhu, X P; Xia, J W (2022) First Report of Fruit Rot Caused by Fusarium luffae in Muskmelon in China. Plant Disease 106(6): 1763.

Zhou, Y; Zhang, W; Li, X; Ji, S; Chethana, K W T; Hyde, K D; Yan, J (2022) Fusarium Species Associated with Cherry Leaf Spot in China. Plants 11(20): 2760.

Hop stunt viroid

Biosecurity Australia (2010) Final review of policy: importation of Hop (Humulus species) propagative material into Australia. Biosecurity Australia, Australian Government, Canberra.

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

Bragard, C; Dehnen‐Schmutz, K; Gonthier, P; Jacques, M A; Jaques Miret, J A; Justesen, A F; Macleod, A; Magnusson, C S; Milonas, P; Navas‐Cortes, J A; Parnell, S; Potting, R; Reignault, P L; Thulke, H H; Van Der Werf, W; Vicent Civera, A; Yuen, J; Zappalà, L; Candresse, T; Chatzivassiliou, E; Finelli, F; Winter, S; Chiumenti, M; Di Serio, F; Kaluski, T; Minafra, A; Rubino, L (2019) Pest categorisation of non‐EU viruses and viroids of Cydonia Mill., Malus Mill. and Pyrus L. EFSA Journal 17(9).

Breitwieser, I; Brownsey, P J; Nelson, W A; Wilton, A D (2010) Flora of New Zealand Online. www.nzflora.info Accessed 2022-11

Di Serio, F; Ambrós, S; Sano, T; Flores, R; Navarro, B (2018) Viroid Diseases in Pome and Stone Fruit Trees and Koch’s Postulates: A Critical Assessment. Viruses 10(11): 612.

EPPO (2022) EPPO Datasheet: Apple fruit crinkle viroid. http://gd.eppo.int

Flores, R; Gas, M-E; Molina-Serrano, D; Nohales, M-Á; Carbonell, A; Gago, S; De La Peña, M; Daròs, J-A (2009) Viroid Replication: Rolling-Circles, Enzymes and Ribozymes. Viruses 1(2): 317-334.

Gregory, A; Scott, S W; Brannen, P M; Royal, D C (2018) Graft-transmissible agents in oriental persimmons (Diospyros kaki L) in the southeastern USA. Australasian Plant Disease Notes 13(1).

Guček, T; Jakše, J; Matoušek, J; Radišek, S (2019) One-step multiplex RT-PCR for simultaneous detection of four viroids from hop (Humulus lupulus L.). European Journal of Plant Pathology 154(2): 273-286.

ICTV (2022) International Committee on Taxonomy of Viruses. https://ictv.global/taxonomy/ Accessed 2022

Ito, T; Kanematsu, S; Koganezawa, H; Tsuchizaki, T; Yoshida, K (1993) Detection of a Viroid Associated with Apple Fruit Crinkle Disease. Japanese Journal of Phytopathology 59(5): 520-527.

Mahaffee, W; Pethybridge, S; Gent, D (2007) The compendium of hop diseases, arthropod pests and other disorders. The American Phytopathological Society; St. Paul, Minnesota.

Nakaune, R; Nakano, M (2008) Identification of a new Apscaviroid from Japanese persimmon. Archives of Virology 153(5): 969-972.

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

NZPCN (2022) New Zealand Plant Conservation Network. https://www.nzpcn.org.nz/ Accessed June 2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Pethybridge, S J; Hay, F S; Barbara, D J; Eastwell, K C; Wilson, C R (2008) Viruses and viroids infecting hop: Significance, epidemiology, and management. Plant Disease 92(3): 324-338.

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Sano, T; Isono, S; Matsuki, K; Kawaguchi-Ito, Y; Tanaka, K; Kondo, K-I; Iijima, A; Bar-Joseph, M (2008) Vegetative propagation and its possible role as a genetic bottleneck in the shaping of the apple fruit crinkle viroid populations in apple and hop plants. Virus Genes 37(3): 298-303.

Sano, T; Yoshida, H; Goshono, M; Monma, T; Kawasaki, H; Ishizaki, K (2004) Characterization of a new viroid strain from hops: evidence for viroid speciation by isolation in different host species. Journal of General Plant Pathology 70(3): 181-187.

Sastry, K S; Mandal, B; Hammond, J; Scott, S W; Briddon, R W (2019) Humulus lupulus (Hop). Encyclopedia of Plant Viruses and Viroids. Springer India: New Delhi.

Veerakone, S; Tang, J; Ward, L; Liefting, L; Perez-Egusquiza, Z; Lebas, B; Delmiglio, C; Fletcher, J; Guy, P (2015) A review of the plant virus, viroid, liberibacter and phytoplasma records for New Zealand. Australasian Plant Pathology 44: 463-514.

Petunia asteroid mosaic virus

Allen, W R; Davidson, T R (1967) Tomato bushy stunt virus from Prunus avium L.: I. Field studies and virus characterization. Canadian Journal of Botany 45(12): 2375-2383.

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

Campbell, R N; Lovisolo, O; Lisa, V (1975) Soil transmission of Petunia asteroid mosaic strain of Tomato bushy stunt virus. Phytopathologia Mediterranea 14(2/3): 82-86.

Jelkmann, W (2011) Chapter 22: Cherry detrimental canker. In A Hadidi; M Barba; T Candresse; W Jelkmann (eds) Virus and virus-like diseases of pome and stone fruits. The American Phytopathological Society: St. Paul, Minnesota.

Kegler, H; Kontzog, H G (1990) Non-vectored transmission of plant viruses. In R Koenig (Ed.), Proceedings of the First Symposium of the International Working Group on Plant Viruses with Fungal Vectors (pp. 159-162). Braunschweig, Germany: Eugen Ulmer GmbH & Co.

Koenig, R; Kunze, L (1982) Identification of Tombusvirus isolates from cherry in southern Germany as Petunia asteroid mosaic virus. Journal of Phytopathology 103(4): 361-368.

Koenig, R; Rüdel, M; Lesemann, D E (1989) Detection of Petunia asteroid mosaic, Carnation ringspot and Tobacco necrosis viruses in ditches and drainage canals in a grapevine-growing area in West Germany. Journal of Phytopathology 127(2): 169-172.

Lovisolo, O (1990) Ecological observations on Petunia asteroid mosaic virus (PeAMV). In Proceedings of the First Symposium of the International Working Group on Plant Viruses with fungal vectors (pp. 155-158). Braunschweig, Germany: Eugen Ulmer GmbH & Co.

Mahaffee, W; Pethybridge, S; Gent, D (2007) The compendium of hop diseases, arthropod pests and other disorders. The American Phytopathological Society; St. Paul, Minnesota.

Martelli, G P (2014) Directory of virus and virus-like diseases of the grapevine and their agents. Journal of Plant Pathology 96: 105-120.

MPI (2021) Facility Standard: Post Entry Quarantine for Plants. Ministry for Primary Industries, https://www.mpi.govt.nz/dmsdocument/11368-Post-Entry-Quarantine-forPlants-Facilities-Standard

Noh, G M; Choi, C W; Choi, J K (1995) Petunia asteroid mosaic virus isolated from Petunia hybrida Vilm. Korean Journal of Plant Pathology 11: 361-366.

Novák, J B; Lanzová, J (1976) Identification of alfalfa mosaic virus and tomato bushy stunt virus in hop (Humulus lupulus L.) and grapevine (Vitis vinifera subsp. sativa (DC./HEGI)) plants in Czechoslovakia. Biologia plantarum 18(2): 152-154.

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Pfeilstetter, E; Kunze, L; Zinkernagel, V (1996) Viral twig necrosis of sweet cherry. Modes of transmission and spread of petunia asteroid mosaic virus (PeAMV). Annals of Applied Biology 128(2): 285-301.

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

Plant & Food Research (2021) Fresh Facts: New Zealand Horticulture. Auckland, New Zealand. https://unitedfresh.co.nz/technical-advisory-group/fresh-facts

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Veerakone, S; Tang, J; Ward, L; Liefting, L; Perez-Egusquiza, Z; Lebas, B; Delmiglio, C; Fletcher, J; Guy, P (2015) A review of the plant virus, viroid, liberibacter and phytoplasma records for New Zealand. Australasian Plant Pathology 44: 463-514.

Phaeomycocentrospora cantuariensis

Baysal-Gurel, F (2020) Pseudocercospora fuligena (black leaf mould)  (Publication no. 10.1079/ISC.12222.20210200693). https://www.cabi.org/isc/datasheet/12222#tomeansOfMovementAndDispersal

Bethke, J A; Paine, T D (1991) Screen Hole Size and Barriers for Exclusion of Insect Pests of Glasshouse Crops. Journal of Entomological Science 26(1): 169-177.

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

Braun, U (1993) Taxonomic notes on some species of the Cercospora complex. III. Mycotaxon 48(1): 275-298.

CABI (2021) Acalypha australis. https://www.cabi.org/isc/datasheet/111982#todistributionDatabaseTable

CABI (2022) Pseudocercospora angolensis (leaf spot of Citrus spp.). https://www.cabi.org/isc/datasheet/12184 Accessed 06/09/2022

Crous, P W; Braun, U; Hunter, G C; Wingfield, M J; Verkley, G J M; Shin, H D; Nakashima, C; Groenewald, J Z (2013) Phylogenetic lineages in Pseudocercospora. Studies in Mycology 75: 37-114.

Deighton, F C (1971) Studies on Cercospora and allied genera. III. Centrospora. Mycological Papers 124: 1-13.

Deighton, F C (1972) Mycocentrospora, a new name for Centrospora Neerg. Taxon 21(5-6): 716.

GBIF (2023) Phaeomycocentrospora cantuariensis. https://www.gbif.org/occurrence/search?taxon_key=7995737 Accessed 01/02/2023

Imbusch, F; Liebe, S; Erven, T; Varrelmann, M (2021) Dynamics of cercospora leaf spot disease determined by aerial spore dispersal in artificially inoculated sugar beet fields. Plant Pathology 70(4): 853-861.

Kauschitz, J; Plenk, A (2022) Erstnachweis von Phaeomycocentrospora cantuariensis an Cannabis sativa in Österreich und Europa. STAPFIA 113(1): 107-110.

Kingsseeds (2022) Luffa. https://www.kingsseeds.co.nz/shop/Vegetables/Luffa-7380.html Accessed 28/10/2022

Mahaffee, W; Pethybridge, S; Gent, D (2007) The compendium of hop diseases, arthropod pests and other disorders. The American Phytopathological Society; St. Paul, Minnesota.

MPI (2021) Facility Standard: Post Entry Quarantine for Plants. Ministry for Primary Industries, https://www.mpi.govt.nz/dmsdocument/11368-Post-Entry-Quarantine-forPlants-Facilities-Standard

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

Phookamsak, R; Liu, J-K; McKenzie, E H C; Manamgoda, D S; Ariyawansa, H; Thambugala, K M; Dai, D-Q; Camporesi, E; Chukeatirote, E; Wijayawardene, N N; Bahkali, A H; Mortimer, P E; Xu, J-C; Hyde, K D (2014) Revision of Phaeosphaeriaceae. Fungal Diversity 68(1): 159-238.

Plant & Food Research (2021) Fresh Facts: New Zealand Horticulture. Auckland, New Zealand. https://unitedfresh.co.nz/technical-advisory-group/fresh-facts

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Radišek, S; Leskošek, G; Jakše, J; Javornik, B (2009) Occurrence of Cercospora cantuariensison hop in Austria and Slovenia. Plant Pathology 58(2): 400-400.

Results, C (2022) Average Annual Temperatures in European Cities. https://www.currentresults.com/Weather/index.php Accessed 29/08/2022

Rodriguez-Salamanca, L (2022) Lilac Pseudocercospora Leaf Spot. https://hortnews.extension.iastate.edu/lilac-pseudocercospora-leaf-spot Accessed 12/10/2022

Salmon, E S; Wormald, H (1923) A new Cercospora on Humulus. Journal of Botany, British and Foreign 61: 134-136.

Skaracis, G N; Pavli, O I; Biancardi, E (2010) Cercospora Leaf Spot Disease of Sugar Beet. Sugar Tech 12(3-4): 220-228.

Watson, A J (1971) Foreign Bacterial and Fungus Diseases of Food, Forage, and Fiber Crops: An Annotated List. U.S. Agricultural Research Service.

Podosphaera macularis

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

Braun, U; Takamatsu, S (2000) Phylogeny of Erysiphe, Microsphaera, Uncinula (Erysipheae) and Cystotheca, Podosphaera, Sphaerotheca (Cystotheceae) inferred from rDNA ITS sequences: some taxonomic consequences. Schlechtendalia 4: 1-33.

CABI (2022) Datasheet: Podosphaera macularis (powdery mildew of hop). https://www.cabi.org/cpc/datasheet/50923 Accessed October 2022

Claassen, B; Wolfenbarger, S; Havill, J; Orshinsky, A; Gent, D (2017) Infestation of hop seed (Humulus lupulus) by chasmothecia of the powdery mildew fungus, Podosphaera macularis. Plant Disease 101: 1323.

Farr, D F; Rossman, A Y (2022) Fungal databases, U. S. National Fungus Collections. https://nt.ars-grin.gov/fungaldatabases/ Accessed June 1, 2022

Gent, D H; Bhattacharyya, S; Ruiz, T (2019) Prediction of spread and regional development of hop powdery mildew: a network analysis. Phytopathology 109(8): 1392-1403.

Gent, D H; Claassen, B J; Gadoury, D M; Grünwald, N J; Knaus, B J; Radišek, S; Weldon, W; Wiseman, M S; Wolfenbarger, S N (2020) Population diversity and structure of Podosphaera macularis in the Pacific Northwestern United States and other populations. Phytopathology 110(5): 1105-1116.

Gent, D H; Nelson, M E; George, A E; Grove, G G; Mahaffee, W F; Ocamb, C M; Barbour, J D; Peetz, A; Turechek, W W (2008) A decade of hop powdery mildew in the Pacific Northwest. Plant Health Progress 9(1): 33.

Glawe, D A (2008) The powdery mildews: a review of the world's most familiar (yet poorly known) plant pathogens. Annual Review of Phytopathology 46: 27-51.

Liu, M; Braun, U (2022) Powdery mildews on crops and ornamentals in Canada: a summary of the phylogeny and taxonomy from 2000–2019. Canadian Journal of Plant Pathology 44(2): 191-218.

Mahaffee, W; Pethybridge, S; Gent, D (2007) The compendium of hop diseases, arthropod pests and other disorders. The American Phytopathological Society; St. Paul, Minnesota.

Mascellani, A; Leiss, K; Bac-Molenaar, J; Malanik, M; Marsik, P; Olesinski, E H; Tauchen, J; Kloucek, P; Smejkal, K; Havlik, J (2021) Polyketide derivatives in the resistance of Gerbera hybrida to powdery mildew. Frontiers in Plant Science 12.

MPI (2021) Facility Standard: Post Entry Quarantine for Plants. Ministry for Primary Industries, https://www.mpi.govt.nz/dmsdocument/11368-Post-Entry-Quarantine-forPlants-Facilities-Standard

NZHIA (2022) New Zealand Hemp Industries Association Industry Directory. https://nzhia.com/directory/

NZPCN (2022) New Zealand Plant Conservation Network. https://www.nzpcn.org.nz/ Accessed June 2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Peetz, A B; Mahaffee, W F; Gent, D H (2009) Effect of temperature on sporulation and infectivity of Podosphaera macularis on Humulus lupulus. Plant Disease 93(3): 281-286.

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Punja, Z K (2022) First report of the powdery mildew pathogen of hops, Podosphaeria macularis, naturally infecting cannabis (Cannabis sativa L., marijuana) plants under field conditions. J Canadian Journal of Plant Pathology 44(2): 235-249.

Smith, J M (2005) Powdery mildew (Podosphaera macularis Braun & Takamatsu) resistance in wild hop genetic resources. Master Thesis.

Turechek, W W; Mahaffee, W F; Ocamb, C M (2001) Development of management strategies for hop powdery mildew in the Pacific Northwest. J Plant Health Progress 2(1): 8.

Weldon, W A; Marks, M E; Gevens, A J; D’Arcangelo, K N; Quesada-Ocampo, L M; Parry, S; Gent, D H; Cadle-Davidson, L E; Gadoury, D M (2021) A comprehensive characterization of ecological and epidemiological factors driving perennation of Podosphaera macularis chasmothecia on hop (Humulus lupulus). J Phytopathology 111(11): 1972-1982.

Weldon, W A; Ullrich, M R; Smart, L B; Smart, C D; Gadoury, D M (2020) Cross-infectivity of powdery mildew isolates originating from hemp (Cannabis sativa) and Japanese hop (Humulus japonicus) in New York. Plant Health Progress 21(1): 47-53.

Pseudocercospora humuli

Baysal-Gurel, F (2020) Pseudocercospora fuligena (black leaf mould)  (Publication no. 10.1079/ISC.12222.20210200693). https://www.cabi.org/isc/datasheet/12222#tomeansOfMovementAndDispersal

Bethke, J A; Paine, T D (1991) Screen Hole Size and Barriers for Exclusion of Insect Pests of Glasshouse Crops. Journal of Entomological Science 26(1): 169-177.

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

CABI (2022) Pseudocercospora angolensis (leaf spot of Citrus spp.). https://www.cabi.org/isc/datasheet/12184 Accessed 06/09/2022

Crous, P W; Braun, U; Hunter, G C; Wingfield, M J; Verkley, G J M; Shin, H D; Nakashima, C; Groenewald, J Z (2013) Phylogenetic lineages in Pseudocercospora. Studies in Mycology 75: 37-114.

Global Modeling and Assimilation Office (2015) inst3_3d_asm_Cp: MERRA-2 3D IAU State, Meteorology Instantaneous 3-hourly (p-coord, 0.625x0.5L42), version 5.12.4  (Publication no. 10.5067/VJAFPLI1CSIV). https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/citing_MERRA-2/ Accessed 07/09/2022

Guatimosim, E; Schwartsburd, P B; Barreto, R W; Crous, P W (2016) Novel fungi from an ancient niche: cercosporoid and related sexual morphs on ferns. Persoonia 37: 106-141.

Imbusch, F; Liebe, S; Erven, T; Varrelmann, M (2021) Dynamics of cercospora leaf spot disease determined by aerial spore dispersal in artificially inoculated sugar beet fields. Plant Pathology 70(4): 853-861.

Japan Meteorological Agency (2022) Tables of Monthly Climate Statistics. In.

Mahaffee, W; Pethybridge, S; Gent, D (2007) The compendium of hop diseases, arthropod pests and other disorders. The American Phytopathological Society; St. Paul, Minnesota.

MPI (2021) Facility Standard: Post Entry Quarantine for Plants. Ministry for Primary Industries, https://www.mpi.govt.nz/dmsdocument/11368-Post-Entry-Quarantine-forPlants-Facilities-Standard

Nakashima, C; Motohashi, K; Chen, C-Y; Groenewald, J Z; Crous, P W (2016) Species diversity of Pseudocercospora from Far East Asia. Mycological Progress 15(10-11): 1093-1117.

NIWA (2022) Climate data and activities. https://niwa.co.nz/education-and-training/schools/resources/climate Accessed 19/10/2022

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

Plant & Food Research (2021) Fresh Facts: New Zealand Horticulture. Auckland, New Zealand. https://unitedfresh.co.nz/technical-advisory-group/fresh-facts

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Quaedvlieg, W; Groenewald, J Z; De Jesús Yáñez-Morales, M; Crous, P W (2012) DNA barcoding of Mycosphaerella species of quarantine importance to Europe. Persoonia - Molecular Phylogeny and Evolution of Fungi 29(1): 101-115.

Rodriguez-Salamanca, L (2022) Lilac Pseudocercospora Leaf Spot. https://hortnews.extension.iastate.edu/lilac-pseudocercospora-leaf-spot Accessed 12/10/2022

Salmon, E S; Wormald, H (1923) A new Cercospora on Humulus. Journal of Botany, British and Foreign 61: 134-136.

Skaracis, G N; Pavli, O I; Biancardi, E (2010) Cercospora Leaf Spot Disease of Sugar Beet. Sugar Tech 12(3-4): 220-228.

Pseudoperonospora humuli

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

Breitwieser, I; Brownsey, P J; Nelson, W A; Wilton, A D (2010) Flora of New Zealand Online. www.nzflora.info Accessed 2022-11

CABI (2021) Pseudoperonospora humuli (downy mildew of hop). https://www.cabi.org/isc/datasheet/45245 Accessed 20/09/2022

Choi, Y J; Hong, S B; Shin, H D (2005) A re-consideration of Pseudoperonospora cubensis and P. humuli based on molecular and morphological data. Mycol Res 109(Pt 7): 841-848.

Coley-Smith, J.R. (1964) Persistence and identification of downy mildew Pseudoperonospora humuli (Miy. and Tak.) Wilson in hop rootstocks. Ann. Appl. Biol. 53: 129-132.

Economics, T (2022) Australia Imports from New Zealand of Hops cones, fresh or dried, lupulin. https://tradingeconomics.com/australia/imports/new-zealand/hop-cones-fresh-dried-lupulin Accessed 18/11/2022

Gent, D H; Ocamb, C M (2022) Hop (Humulus lupulus)-Downy Mildew. https://pnwhandbooks.org/plantdisease/host-disease/hop-humulus-lupulus-downy-mildew Accessed 16/09/2022

Gevens, A (2016) Common Diseases of North Central US Hops & Diagnostic Support Updates.  In A Gevens (ed) North Central Plant Disease Diagnostic Network Meeting. Madison, WI.

Ha, K; Atallah, S; Benjamin, T; Hoagland, L; Farlee, L; Woeste, K (2017) Costs and returns of producing hops in established tree plantations. Purdue extention 546.

Higgins, D S; Hausbeck, M K (2021) Susceptibility of Hop Cultivars and Rootstock to Downy Mildew Caused by Pseudoperonospora humuli. HortScience 56(5): 543-550.

Lewis, M L; Miller, S A (2018) Hops Downy Mildew. https://ohioline.osu.edu/factsheet/plpath-fru-49#:~:text=Downy%20mildew%20is%20the%20most,wet%20weather%20and%20mild%20temperatures . Accessed 8/11/2022

Mahaffee, W; Pethybridge, S; Gent, D (2007) The compendium of hop diseases, arthropod pests and other disorders. The American Phytopathological Society; St. Paul, Minnesota.

Marks, M E; Gevens, A J (2019) Investigating Phenylamide Insensitivity in Wisconsin Populations of Pseudoperonospora humuli. Plant Health Progress 20(4): 263-269.

Mitchell, M N; Ocamb, C M; Grünwald, N J; Mancino, L E; Gent, D H (2011) Genetic and Pathogenic Relatedness of Pseudoperonospora cubensis and P. humuli. Phytopathology® 101(7): 805-818.

MPI (2021) Facility Standard: Post Entry Quarantine for Plants. Ministry for Primary Industries, https://www.mpi.govt.nz/dmsdocument/11368-Post-Entry-Quarantine-forPlants-Facilities-Standard

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

Plant & Food Research (2021) Fresh Facts: New Zealand Horticulture. Auckland, New Zealand. https://unitedfresh.co.nz/technical-advisory-group/fresh-facts

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Purayannur, S; Cano, L M; Bowman, M J; Childs, K L; Gent, D H; Quesada-Ocampo, L M (2020a) The Effector Repertoire of the Hop Downy Mildew Pathogen Pseudoperonospora humuli. Frontiers in Genetics 11.

Purayannur, S; Gent, D H; Miles, T D; Radišek, S; Quesada‐Ocampo, L M (2021) The hop downy mildew pathogen Pseudoperonospora humuli. Molecular Plant Pathology 22(7): 755-768.

Purayannur, S; Miles, T D; Gent, D H; Pigg, S; Quesada-Ocampo, L M (2020b) Hop Downy Mildew Caused by Pseudoperonospora humuli: A Diagnostic Guide. Plant Health Progress 21(3): 173-179.

Quesada-Ocampo, L (2021) Hop Downy Mildew. https://content.ces.ncsu.edu/hop-downy-mildew#section_heading_6475 Accessed 16/09/2022

Runge, F; Thines, M (2012) Reevaluation of Host Specificity of the Closely Related Species <i>Pseudoperonospora humuli</i> and <i>P. cubensis</i>. Plant Disease 96(1): 55-61.

Van-Zwieten, L; Merrington, G; Van-Zwieten, M (2004) Review of impacts on soil biota caused by copper residues from fungicide

application.  Australian New Zealand Soils Conference. University of Sydney, Australia.

Wightwick, A; Walters, R; Allinson, G; Reichman, S; Menzies, N (2010) Environmental risks of fungicides used in horticultural production systems. Fungicides 1: 273-304.

Woods, J L; Gent, D H (2016) Susceptibility of Hop Cultivars to Downy Mildew: Associations with Chemical Characteristics and Region of Origin. Plant Health Progress 17(1): 42-48.

Verticillium nonalfalfae

Auger, J; Pérez, I; Fullerton, R A; Esterio, M (2009) First report of verticillium wilt of gold kiwifruit, Actinidia chinensis cv. Hort 16A, caused by Verticillium albo-atrum in Chile. Plant Disease 93(5): 553-553.

Berne, S; Kovačević, N; Kastelec, D; Javornik, B; Radišek, S (2020) Hop polyphenols in relation to verticillium wilt resistance and their antifungal activity. Plants 9(10): 1318.

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

Capinera, J L (2001) Order Homoptera—Aphids, Leaf- and Planthoppers, Psyllids and Whiteflies. In J L Capinera (ed) Handbook of Vegetable Pests. Academic Press: San Diego.

Dauth, B; Maschek, O; Steinkellner, S; Kirisits, T; Halmschlager, E (2022) Non-target effects of Verticillium nonalfalfae isolate Vert56 used for biological control of Ailanthus altissima on agricultural crops known to be generally susceptible to Verticillium spp. Biological Control 174: 105030.

Dubach, V; Schneider, S; Vögtli, I; Queloz, V; Stroheker, S (2021) Transmission of Verticillium nonalfalfae via root contact from inoculated Ailanthus altissima in close‐to‐nature conditions. Forest Pathology.

EFSA (2014) Scientific Opinion on the pest categorisation of Verticillium alboatrum sensu stricto Reinke and Berthold, V. alfalfae Inderb., HW Platt, RM Bostock, RM Davis & KV Subbarao, sp. nov., and V. nonalfalfae Inderb., HW Platt, RM Bostock, RM Davis & KV Subbar. EFSA Journal 12(12).

EPPO (2020) PM 7/78 (2) Verticillium nonalfalfae and V. dahliae. EPPO Bulletin 50(3): 462-476.

EPPO (2022) EPPO global database. https://gd.eppo.int Accessed 2022

Flajšman, M; Radišek, S; Javornik, B (2017) Pathogenicity assay of Verticillium nonalfalfae on hop plants. Bio Protocol 7(6).

Fradin, E F; Thomma, B P H J (2006) Physiology and molecular aspects of verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Molecular Plant Pathology 7(2): 71-86.

Garibaldi, A; Bertetti, D; Pensa, P; Ortega, S F; Gullino, M L (2016) First report of verticillium wilt caused by Verticillium nonalfalfae on Pelargonium grandiflorum in Italy. Plant Disease 100(11): 2322-2322.

Harrington, T C; Cobb, F W (1984) Verticillium albo-atrum on Ceanothus in a California Forest. Plant Disease 68: 1012.

Inderbitzin, P; Bostock, R M; Davis, R M; Usami, T; Platt, H W; Subbarao, K V (2011) Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLOS ONE 6(12): e28341.

Inderbitzin, P; Subbarao, K V (2014) Verticillium systematics and evolution: How confusion impedes Verticillium wilt management and how to resolve It. Phytopathology® 104(6): 564-574.

Isaac, I; Keyworth, W G (1948) Verticillium wilt of the hop (Humulus lupulus). Annals of Applied Biology 35(2): 243-249.

Jeseničnik, T; Štajner, N; Radišek, S; Jakše, J (2019) RNA interference core components identified and characterised in Verticillium nonalfalfae, a vascular wilt pathogenic plant fungi of hops. Scientific Reports 9(1): 1-12.

Jhou, Y-S; Poovendhan, S; Huang, L-H; Tsai, C-W (2021) Host Acceptance and Plant Resistance: A Comparative Behavioral Study of Myzus persicae and Acyrthosiphon pisum. Insects 12(11): 975.

Kasson, M T; O’Neal, E S; Davis, D D (2015) Expanded host range testing for Verticillium nonalfalfae: potential biocontrol agent against the invasive Ailanthus altissima. Plant Disease 99(6): 823-835.

Kasson, M T; Short, D P G; O'Neal, E S; Subbarao, K V; Davis, D D (2014) Comparative pathogenicity, biocontrol efficacy, and multilocus sequence typing of Verticillium nonalfalfae from the invasive Ailanthus altissima and other hosts. Phytopathology 104(3): 282-292.

Kunej, U; Mikulič-Petkovšek, M; Radišek, S; Štajner, N (2020) Changes in the phenolic compounds of hop (Humulus lupulus L.) Induced by infection with Verticillium nonalfalfae, the causal agent of hop Verticillium wilt. Plants 9(7): 841.

Lee, H W; Ho, W W H; Alexander, B J R; Baskarathevan, J (2022) A rapid qPCR for the detection of Verticillium nonalfalfae MLST2 – a highly pathogenic fungus on kiwifruit. Plant Disease.

Li, H; Wang, Z; Hu, X; Shang, W; Shen, R; Guo, C; Guo, Q; Subbarao, K V (2019) Assessment of resistance in potato cultivars to verticillium wilt caused by Verticillium dahliae and Verticillium nonalfalfae. Plant Disease 103(6): 1357-1362.

Malcolm, G M; Kuldau, G A; Gugino, B K; Jiménez-Gasco, M D M (2013) Hidden host plant associations of soilborne fungal pathogens: an ecological perspective. Phytopathology 103(6): 538-544.

Mellow, K D; Tyson, J L; Manning, M A; Wright, P J (2019) Preliminary pathogenicity screening of Verticillium spp. on kiwifruit in New Zealand. New Zealand Plant Protection 72: 89-94.

MPI (2021) Facility Standard: Post Entry Quarantine for Plants. Ministry for Primary Industries, https://www.mpi.govt.nz/dmsdocument/11368-Post-Entry-Quarantine-forPlants-Facilities-Standard

NZPCN (2022) New Zealand Plant Conservation Network. https://www.nzpcn.org.nz/ Accessed June 2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

Plant & Food Research (2021) Fresh Facts: New Zealand Horticulture. Auckland, New Zealand. https://unitedfresh.co.nz/technical-advisory-group/fresh-facts

Progar, V; Jakše, J; Štajner, N; Radišek, S; Javornik, B; Berne, S (2017) Comparative transcriptional analysis of hop responses to infection with Verticillium nonalfalfae. Plant Cell Reports 36(10): 1599-1613.

Radišek, S; Jakše, J; Javornik, B (2006) Genetic variability and virulence among Verticillium albo-atrum isolates from hop. European Journal of Plant Pathology 116(4): 301-314.

Radišek, S; Jakše, J; Simončič, A; Javornik, B (2003) Characterization of Verticillium albo-atrum field isolates using pathogenicity data and AFLP analysis. Plant Disease 87(6): 633-638.

Seefelder, S; Seigner, E; Niedermeier, E; Radišek, S; Javornik, B (2009) Genotyping of Verticillium pathotypes in the Hallertau: basic findings to assess the risk of Verticillium infections.  International Hop Growers' Convention. Leon, Spain;  pp. 74-76.

Snyder, A L; Salom, S M; Kok, L T; Griffin, G J; Davis, D D (2012) Assessing Eucryptorrhynchus brandti (Coleoptera: Curculionidae) as a potential carrier for Verticillium nonalfalfae (Phyllachorales) from infected Ailanthus altissima. Biocontrol Science and Technology 22(9): 1005-1019.

Xylella fastidiosa

Ali, B M; van der Werf, W; Oude Lansink, A (2021) Assessment of the environmental impacts of Xylella fastidiosa subsp. pauca in Puglia. Crop Protection 142: 105519.

Almeida, R P P; Nunney, L (2015) How do plant diseases caused by Xylella fastidiosa emerge? Plant Disease 99(11): 1457-1467.

Biota NZ (2022) Biota of New Zealand: names and classification of bacteria, fungi, land invertebrates and plants. https://biotanz.landcareresearch.co.nz/ Accessed February 2022

Bodino, N; Cavalieri, V; Dongiovanni, C; Simonetto, A; Saladini, M A; Plazio, E; Gilioli, G; Molinatto, G; Saponari, M; Bosco, D (2020) Dispersal of Philaenus spumarius (Hemiptera: Aphrophoridae), a Vector of Xylella fastidiosa, in Olive Grove and Meadow Agroecosystems. Environmental Entomology 50(2): 267-279.

Bragard, C; Dehnen‐Schmutz, K; Di Serio, F; Gonthier, P; Jacques, M A; Jaques Miret, J A; Justesen, A F; Macleod, A; Magnusson, C S; Milonas, P; Navas‐Cortés, J A; Potting, R; Reignault, P L; Thulke, H H; Van Der Werf, W; Vicent Civera, A; Yuen, J; Zappalà, L; Boscia, D; Chapman, D; Gilioli, G; Krugner, R; Mastin, A; Simonetto, A; Spotti Lopes, J R; White, S; Abrahantes, J C; Delbianco, A; Maiorano, A; Mosbach‐Schulz, O; Stancanelli, G; Guzzo, M; Parnell, S (2019) Update of the Scientific Opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory. EFSA Journal 17(5).

Breitwieser, I; Brownsey, P J; Nelson, W A; Wilton, A D (2010) Flora of New Zealand Online. www.nzflora.info Accessed 2022-11

Burbank, L P (2022) Threat of Xylella fastidiosa and options for mitigation in infected plants (Vol. 2022). CABI International.

Castellano, S; Di Palma, A; Germinara, G; Lippolis, M; Starace, G; Scarascia-Mugnozza, G (2019) Experimental Nets for a Protection System against the Vectors of Xylella fastidiosa Wells et al. Agriculture 9(2): 32.

Castro, C; Disalvo, B; Roper, M C (2021) Xylella fastidiosa: A reemerging plant pathogen that threatens crops globally. PLOS Pathogens 17(9): e1009813.

Chatterjee, S; Almeida, R P P; Lindow, S (2008) Living in two Worlds: The Plant and Insect Lifestyles of Xylella fastidiosa. Annual Review of Phytopathology 46(1): 243-271.

Cornara, D; Marra, M; Tedone, B; Cavalieri, V; Porcelli, F; Fereres, A; Purcell, A; Saponari, M (2020) No evidence for cicadas’ implication in Xylella fastidiosa epidemiology. Entomologia Generalis 40(2): 125-132.

Cornara, D; Saponari, M; Zeilinger, A R; De Stradis, A; Boscia, D; Loconsole, G; Bosco, D; Martelli, G P; Almeida, R P P; Porcelli, F (2017) Spittlebugs as vectors of Xylella fastidiosa in olive orchards in Italy. Journal of Pest Science 90(2): 521-530.

EPPO (2022) EPPO global database. https://gd.eppo.int Accessed 2022

European Food Safety Authority (2022) Update of the Xylella spp. host plant database. In (6 ed.).

Gargani, E; Ferretti, L; Faggioli, F; Haegi, A; Luigi, M; Landi, S; Simoni, S; Benvenuti, C; Guidi, S; Simoncini, S (2017) A survey on pests and diseases of Italian hop crops. Italus Hortus 24(2): 1-17.

Godefroid, M; Cruaud, A; Streito, J-C; Rasplus, J-Y; Rossi, J-P (2019) Xylella fastidiosa: climate suitability of European continent. Scientific Reports 9(1).

Groenteman, R; Forgie, S A; Hoddle, M S; Ward, D F; Goeke, D F; Anand, N (2015) Assessing invasion threats: novel insect-pathogen-natural enemy associations with native New Zealand plants in southern California. Biological invasions 17(5): 1299-1305.

Hamilton, K A; Morales, C F (1992) Cercopidae (Insecta: Homoptera). Fauna of New Zealand 25.

Hoddle, M S (2004) The potential adventive geographic range of glassy-winged sharpshooter, Homalodisca coagulata and the grape pathogen Xylella fastidiosa: implications for California and other grape growing regions of the world. Crop Protection 23(8): 691-699.

Jeger, M; Caffier, D; Candresse, T; Chatzivassiliou, E; Dehnen‐Schmutz, K; Gilioli, G; Grégoire, J C; Jaques Miret, J A; Macleod, A; Navajas Navarro, M; Niere, B; Parnell, S; Potting, R; Rafoss, T; Rossi, V; Urek, G; Van Bruggen, A; Van Der Werf, W; West, J; Winter, S; Almeida, R; Bosco, D; Jacques, M A; Landa, B; Purcell, A; Saponari, M; Czwienczek, E; Delbianco, A; Stancanelli, G; Bragard, C (2018) Updated pest categorisation of Xylella fastidiosa. EFSA Journal 16(7).

Krell, R K; Boyd, E A; Nay, J E; Park, Y-L; Perring, T M (2007) Mechanical and Insect Transmission of<i>Xylella fastidiosa</i>to<i>Vitis vinifera</i>. American Journal of Enology and Viticulture 58(2): 211-216.

Lago, C; Garzo, E; Moreno, A; Barrios, L; Martí-Campoy, A; Rodríguez-Ballester, F; Fereres, A (2021) Flight performance and the factors affecting the flight behaviour of Philaenus spumarius the main vector of Xylella fastidiosa in Europe. Scientific Reports 11(1).

Larivière, M-C; Fletcher, M J; Larochelle, A (2010) Auchenorrhyncha (Insecta: Hemiptera): catalogue. Fauna of New Zealand 63.

Loconsole, G; Potere, O; Boscia, D; Altamura, G; Djelouah, K; Elbeaino, T; Frasheri, D; Lorusso, D; Palmisano, F; Pollastro, P (2014) Detection of Xylella fastidiosa in olive trees by molecular and serological methods. Journal of Plant Pathology 96(1): 7-14.

MPI (2021) Facility Standard: Post Entry Quarantine for Plants. Ministry for Primary Industries, https://www.mpi.govt.nz/dmsdocument/11368-Post-Entry-Quarantine-forPlants-Facilities-Standard

MPI (2022) New measures for Xylella fastidiosa on imported nursery stock. In M f P I-M A Matua (Ed.).

Nielsen, M; Everett, K; Marroni, V; Greer, G; Bulman, S (2019) Risks to New Zealand's primary industries from Xylella.

Nunney, L; Azad, H; Stouthamer, R (2019) An Experimental Test of the Host-Plant Range of Nonrecombinant Strains of North American <i>Xylella fastidiosa</i> subsp. <i>multiplex</i>. Phytopathology® 109(2): 294-300.

NZOR (2022) The New Zealand Organisms Register. http://nzor.org.nz Accessed 03/03/2021

ONZPR (2022) Official New Zealand Pest Register. MPI public database. https://pierpestregister.mpi.govt.nz/ Accessed 17 March 2021

Parkinson, N; Malumphy, C (2020) Rapid pest risk analysis (PRA) for: Xylella fastidiosa (update of 2014 UK PRA and 2017 climate appendix). https://planthealthportal.defra.gov.uk/assets/pras/Xylella-Draft-PRA.pdf

Phillips, C B; Kean, J M; Vink, C J; Berry, J A (2018) Utility of the CLIMEX match climates regional algorithm for pest risk analysis: an evaluation with non-native ants in New Zealand. Biological invasions 20(3): 777-791.

Plant & Food Research (2021) Fresh Facts: New Zealand Horticulture. Auckland, New Zealand. https://unitedfresh.co.nz/technical-advisory-group/fresh-facts

PPIN (2022) Plant Pest Information Network, Version 5.03.01. Ministry for Primary Industries Internal Database. Accessed 2022

Purcell, A H; Saunders, S R (1999) Fate of Pierce's Disease Strains of Xylella fastidiosa in Common Riparian Plants in California. Plant Disease 83(9): 825-830.

Sanderlin, R S (2005) Cultivar and Seedling Susceptibility to Pecan Bacterial Leaf Scorch Caused by <i>Xylella fastidiosa</i> and Graft Transmission of the Pathogen. Plant Disease 89(5): 446-449.

Sicard, A; Zeilinger, A R; Vanhove, M; Schartel, T E; Beal, D J; Daugherty, M P; Almeida, R P P (2018) Xylella fastidiosa: Insights into an Emerging Plant Pathogen. Annual Review of Phytopathology 56(1): 181-202.

Soubeyrand, S; De Jerphanion, P; Martin, O; Saussac, M; Manceau, C; Hendrikx, P; Lannou, C (2018) Inferring pathogen dynamics from temporal count data: the emergence ofXylella fastidiosain France is probably not recent. New Phytologist 219(2): 824-836.

Su, C-C; Chang, C-M; Chang, C-J; Su, W-Y; Deng, W-L; Shih, H-T (2013) The occurrence of Pierce’s disease of grapevines and its control strategies in Taiwan. 2013 媒介昆蟲與蟲媒病害國際研討會專刊.

Vanneste, J L (2017) The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Annual Review of Phytopathology 55: 377-399.

Back to top